[image:]

Technical Architecture Document

Databricks Data Governance Framework

Version: 1.0
Date: January 2026
Author: Mastech Digital - Data Engineering Practice

Executive Summary
Data governance is the foundation of enterprise data management, establishing the policies, processes, and standards that ensure data is managed as a valuable organizational asset. This comprehensive framework provides organizations with a structured approach to implementing data governance on the Databricks Lakehouse platform, leveraging Unity Catalog and related capabilities to enforce policies, ensure compliance, and maintain data quality.
Effective data governance enables organizations to maximize the value of their data assets while managing risks related to data privacy, security, and regulatory compliance. The Databricks platform provides native capabilities for implementing governance controls, including fine-grained access control, automated data lineage, audit logging, and data quality monitoring.
This document outlines the key components of a data governance framework, provides implementation guidance specific to Databricks, and establishes best practices for operationalizing governance in enterprise environments.
1. Introduction to Data Governance
1.1 What is Data Governance?
Data governance is the exercise of authority, control, and shared decision-making over the management of data assets. It encompasses the people, processes, and technology required to ensure data is managed consistently across the organization.
Core Components of Data Governance
	Component
	Description
	Databricks Implementation

	Data Policies
	Rules governing data usage
	Unity Catalog permissions

	Data Standards
	Consistent formats and definitions
	Table schemas, naming conventions

	Data Quality
	Ensuring data accuracy
	Delta Live Tables expectations

	Data Security
	Protecting sensitive data
	Row/column-level security

	Data Privacy
	Managing personal data
	Data masking, access controls

	Data Lineage
	Tracking data flow
	Automated lineage tracking

	Data Catalog
	Discovering data assets
	Unity Catalog search

1.2 Why Governance Matters
Business Drivers
Regulatory Compliance: GDPR, CCPA, HIPAA, SOX requirements
Risk Management: Prevent data breaches and misuse
Data Quality: Ensure reliable analytics and ML
Operational Efficiency: Reduce data silos and duplication
Business Value: Enable trusted data-driven decisions
Governance Maturity Levels
	Level
	Characteristics
	Capabilities

	1 - Initial
	Ad-hoc, reactive
	Basic access controls

	2 - Managed
	Documented processes
	Defined roles and policies

	3 - Defined
	Standardized practices
	Automated controls

	4 - Measured
	Metrics and monitoring
	Compliance dashboards

	5 - Optimized
	Continuous improvement
	Predictive governance

1.3 Governance Framework Components
┌───┐
│ DATA GOVERNANCE FRAMEWORK │
├───┤
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │
│ │ PEOPLE │ │ PROCESS │ │ TECHNOLOGY │ │
│ │ │ │ │ │ │ │
│ │ • Roles │ │ • Policies │ │ • Unity │ │
│ │ • RACI │ │ • Standards │ │ Catalog │ │
│ │ • Training │ │ • Workflows │ │ • DLT │ │
│ │ • Stewards │ │ • Audits │ │ • Lineage │ │
│ └─────────────┘ └─────────────┘ └─────────────┘ │
├───┤
│ GOVERNANCE DOMAINS │
│ ┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐ │
│ │ Access │ │ Quality │ │ Privacy │ │Lifecycle│ │Metadata │ │
│ │ Control │ │ │ │ │ │ │ │ │ │
│ └─────────┘ └─────────┘ └─────────┘ └─────────┘ └─────────┘ │
└───┘
2. Governance Roles and Responsibilities
2.1 Organizational Structure
Governance Council
The governance council provides strategic oversight and decision-making authority for data governance initiatives.
	Role
	Responsibilities
	Typical Title

	Executive Sponsor
	Strategic direction, funding
	CDO, CIO

	Governance Lead
	Program management, coordination
	Data Governance Director

	Domain Owner
	Domain-specific policies
	VP of Sales/Marketing/Finance

	Technical Lead
	Platform implementation
	Data Architect

Operational Roles
	Role
	Responsibilities
	Unity Catalog Role

	Data Steward
	Data quality, definitions
	MANAGE permissions

	Data Owner
	Access decisions, accountability
	Owner of catalog/schema

	Data Custodian
	Technical implementation
	Data engineer

	Data Consumer
	Data usage, feedback
	SELECT permissions

2.2 RACI Matrix
	Activity
	Governance Lead
	Data Owner
	Data Steward
	Data Engineer
	Data Consumer

	Define data policies
	A
	R
	C
	I
	I

	Approve data access
	I
	A
	R
	C
	I

	Define data quality rules
	C
	A
	R
	C
	I

	Implement access controls
	I
	A
	C
	R
	I

	Monitor compliance
	R
	I
	A
	C
	I

	Resolve data issues
	C
	A
	R
	R
	C

	Catalog metadata
	I
	C
	A
	R
	I

R = Responsible, A = Accountable, C = Consulted, I = Informed
2.3 Implementing Roles in Unity Catalog
-- Create governance groups
CREATE GROUP governance_council;
CREATE GROUP data_stewards;
CREATE GROUP data_owners;
CREATE GROUP data_engineers;
CREATE GROUP data_analysts;

-- Assign permissions based on roles
-- Data Owners: Full control over their domain
GRANT ALL PRIVILEGES ON CATALOG sales TO data_owners_sales;
GRANT ALL PRIVILEGES ON CATALOG marketing TO data_owners_marketing;

-- Data Stewards: Manage metadata and quality
GRANT USAGE ON CATALOG production TO data_stewards;
GRANT SELECT ON ALL TABLES IN CATALOG production TO data_stewards;
GRANT MODIFY ON SCHEMA production.metadata TO data_stewards;

-- Data Engineers: Build and maintain pipelines
GRANT ALL PRIVILEGES ON SCHEMA production.bronze TO data_engineers;
GRANT ALL PRIVILEGES ON SCHEMA production.silver TO data_engineers;
GRANT CREATE TABLE ON SCHEMA production.gold TO data_engineers;

-- Data Analysts: Read curated data
GRANT USAGE ON CATALOG production TO data_analysts;
GRANT SELECT ON ALL TABLES IN SCHEMA production.gold TO data_analysts;
3. Data Classification
3.1 Classification Framework
Data classification categorizes data based on sensitivity and regulatory requirements, enabling appropriate security controls.
Classification Levels
	Level
	Description
	Examples
	Controls

	Public
	No restrictions
	Marketing content
	None required

	Internal
	Internal use only
	Sales reports
	Authentication

	Confidential
	Sensitive business
	Financial data
	Role-based access

	Restricted
	Highly sensitive
	PII, PHI
	Encryption, masking

3.2 Classification Implementation
Tagging with Unity Catalog
-- Apply classification tags to tables
ALTER TABLE production.silver.customers
SET TAGS ('classification' = 'restricted', 'contains_pii' = 'true');

ALTER TABLE production.gold.sales_summary
SET TAGS ('classification' = 'confidential', 'contains_pii' = 'false');

ALTER TABLE production.bronze.website_logs
SET TAGS ('classification' = 'internal', 'retention_days' = '90');

-- Query tables by classification
SELECT
 table_catalog,
 table_schema,
 table_name,
 tag_name,
 tag_value
FROM system.information_schema.table_tags
WHERE tag_name = 'classification'
AND tag_value = 'restricted';
Column-Level Classification
-- Tag sensitive columns
ALTER TABLE production.silver.customers
ALTER COLUMN email SET TAGS ('pii' = 'true', 'sensitivity' = 'high');

ALTER TABLE production.silver.customers
ALTER COLUMN ssn SET TAGS ('pii' = 'true', 'sensitivity' = 'critical');

ALTER TABLE production.silver.customers
ALTER COLUMN name SET TAGS ('pii' = 'true', 'sensitivity' = 'medium');

-- Query PII columns across the catalog
SELECT
 table_catalog,
 table_schema,
 table_name,
 column_name,
 tag_value as sensitivity
FROM system.information_schema.column_tags
WHERE tag_name = 'pii'
AND tag_value = 'true';
3.3 Automated Classification
PII Detection and Classification
from pyspark.sql.functions import col, when, regexp_extract

def detect_pii_columns(df, table_name):
 """
 Detect potential PII columns based on patterns and names.
 """
 pii_patterns = {
 'email': r'[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}',
 'phone': r'\d{3}[-.\s]?\d{3}[-.\s]?\d{4}',
 'ssn': r'\d{3}-\d{2}-\d{4}',
 'credit_card': r'\d{4}[-\s]?\d{4}[-\s]?\d{4}[-\s]?\d{4}'
 }

 pii_column_names = ['email', 'phone', 'ssn', 'social_security',
 'credit_card', 'address', 'dob', 'birth_date']

 detected_pii = []

 for column in df.columns:
 # Check column name
 if any(pii_name in column.lower() for pii_name in pii_column_names):
 detected_pii.append({
 'table': table_name,
 'column': column,
 'detection_method': 'column_name',
 'confidence': 'high'
 })
 continue

 # Check data patterns (sample)
 sample_df = df.select(column).limit(1000)
 for pii_type, pattern in pii_patterns.items():
 match_count = sample_df.filter(
 col(column).rlike(pattern)
).count()
 if match_count > 100: # Threshold
 detected_pii.append({
 'table': table_name,
 'column': column,
 'detection_method': f'pattern_{pii_type}',
 'confidence': 'medium'
 })

 return detected_pii

Run detection
df = spark.read.format("delta").load("/silver/customers")
pii_columns = detect_pii_columns(df, "production.silver.customers")

Log results and apply tags
for detection in pii_columns:
 print(f"PII detected: {detection}")
 spark.sql(f"""
 ALTER TABLE {detection['table']}
 ALTER COLUMN {detection['column']}
 SET TAGS ('pii' = 'true', 'auto_detected' = 'true')
 """)
4. Access Control Policies
4.1 Policy Framework
Access Control Principles
Least Privilege: Grant minimum necessary access
Need to Know: Access based on business requirement
Separation of Duties: Prevent conflicts of interest
Defense in Depth: Multiple layers of control
4.2 Access Request Workflow
┌──┐
│ ACCESS REQUEST WORKFLOW │
└──┘
 │
 ▼
┌───────────────┐
│ User submits │
│ access request│
└───────┬───────┘
 │
 ▼
┌───────────────┐ No ┌───────────────┐
│ Valid business├────────────►│ Reject │
│ justification?│ └───────────────┘
└───────┬───────┘
 │ Yes
 ▼
┌───────────────┐ No ┌───────────────┐
│ Data Owner ├────────────►│ Reject │
│ approves? │ └───────────────┘
└───────┬───────┘
 │ Yes
 ▼
┌───────────────┐
│ Security │ No ┌───────────────┐
│ review ├────────────►│ Escalate │
│ (if required) │ └───────────────┘
└───────┬───────┘
 │ Yes
 ▼
┌───────────────┐
│ Grant access │
│ (automated) │
└───────┬───────┘
 │
 ▼
┌───────────────┐
│ Log and audit │
└───────────────┘
4.3 Policy Implementation
Standard Access Policies
-- Policy: Data Analysts can read Gold layer
GRANT USAGE ON CATALOG production TO data_analysts;
GRANT USAGE ON SCHEMA production.gold TO data_analysts;
GRANT SELECT ON ALL TABLES IN SCHEMA production.gold TO data_analysts;

-- Policy: Sensitive data requires additional approval
-- Implement via row/column security
CREATE FUNCTION governance.check_sensitive_access(user STRING)
RETURN is_member('sensitive_data_approved');

ALTER TABLE production.silver.customers
SET ROW FILTER governance.check_sensitive_access ON (TRUE);

-- Policy: Time-limited access for contractors
-- Implemented via group membership management
-- Access review scheduled quarterly
Dynamic Access Control
-- Dynamic row-level security based on user attributes
CREATE FUNCTION governance.region_filter(region STRING)
RETURN CASE
 WHEN is_member('global_access') THEN TRUE
 WHEN region = (
 SELECT region FROM governance.user_regions
 WHERE user_id = current_user()
) THEN TRUE
 ELSE FALSE
END;

ALTER TABLE production.silver.sales
SET ROW FILTER governance.region_filter ON (region);

-- Column masking for sensitive data
CREATE FUNCTION governance.mask_pii(value STRING, column_type STRING)
RETURN CASE
 WHEN is_member('pii_access') THEN value
 WHEN column_type = 'email' THEN CONCAT(LEFT(value, 2), '***@***')
 WHEN column_type = 'phone' THEN CONCAT('***-***-', RIGHT(value, 4))
 WHEN column_type = 'ssn' THEN CONCAT('***-**-', RIGHT(value, 4))
 ELSE '***MASKED***'
END;

ALTER TABLE production.silver.customers
ALTER COLUMN email SET MASK governance.mask_pii USING COLUMNS (CAST('email' AS STRING));
4.4 Access Certification
-- Quarterly access review query
SELECT
 grantee as user_or_group,
 object_type,
 object_name,
 privilege_type,
 granted_at,
 granted_by
FROM governance.access_grants
WHERE granted_at < current_date() - INTERVAL 90 DAYS
ORDER BY grantee, object_name;

-- Identify dormant access
SELECT
 g.grantee,
 g.object_name,
 g.privilege_type,
 MAX(a.event_time) as last_access
FROM governance.access_grants g
LEFT JOIN system.access.audit a
 ON g.grantee = a.user_identity.email
 AND g.object_name = a.request_params.full_name_arg
WHERE g.granted_at < current_date() - INTERVAL 90 DAYS
GROUP BY g.grantee, g.object_name, g.privilege_type
HAVING last_access IS NULL
 OR last_access < current_date() - INTERVAL 60 DAYS;
5. Data Quality Management
5.1 Quality Dimensions
	Dimension
	Definition
	Measurement

	Accuracy
	Data correctly represents reality
	Error rate

	Completeness
	Required data is present
	Null percentage

	Consistency
	Data is consistent across systems
	Match rate

	Timeliness
	Data is available when needed
	Latency

	Validity
	Data conforms to formats
	Validation pass rate

	Uniqueness
	No unwanted duplicates
	Duplicate rate

5.2 Quality Rules Implementation
Delta Live Tables Expectations
import dlt
from pyspark.sql.functions import col, current_timestamp

@dlt.table(
 name="silver_orders",
 comment="Cleaned orders data with quality enforcement"
)
@dlt.expect_or_drop("valid_order_id", "order_id IS NOT NULL")
@dlt.expect_or_drop("positive_amount", "amount > 0")
@dlt.expect_or_fail("valid_customer", "customer_id IS NOT NULL")
@dlt.expect("valid_date", "order_date <= current_date()")
@dlt.expect("valid_status", "status IN ('pending', 'shipped', 'delivered', 'cancelled')")
def silver_orders():
 return (
 dlt.read("bronze_orders")
 .withColumn("processed_at", current_timestamp())
)

Quality metrics are automatically tracked and visible in DLT UI
Custom Quality Framework
from pyspark.sql.functions import col, count, sum as _sum, when, lit

class DataQualityChecker:
 def __init__(self, spark, table_name):
 self.spark = spark
 self.table_name = table_name
 self.df = spark.read.format("delta").table(table_name)
 self.results = []

 def check_not_null(self, column_name, threshold=0.0):
 """Check null percentage is below threshold."""
 total = self.df.count()
 null_count = self.df.filter(col(column_name).isNull()).count()
 null_pct = null_count / total if total > 0 else 0

 self.results.append({
 'check': 'not_null',
 'column': column_name,
 'passed': null_pct <= threshold,
 'actual_value': null_pct,
 'threshold': threshold
 })
 return self

 def check_unique(self, column_name):
 """Check for duplicates."""
 total = self.df.count()
 distinct = self.df.select(column_name).distinct().count()

 self.results.append({
 'check': 'unique',
 'column': column_name,
 'passed': total == distinct,
 'actual_value': distinct,
 'expected_value': total
 })
 return self

 def check_range(self, column_name, min_val, max_val):
 """Check values are within range."""
 out_of_range = self.df.filter(
 (col(column_name) < min_val) | (col(column_name) > max_val)
).count()

 self.results.append({
 'check': 'range',
 'column': column_name,
 'passed': out_of_range == 0,
 'out_of_range_count': out_of_range
 })
 return self

 def check_referential_integrity(self, column_name, ref_table, ref_column):
 """Check foreign key references exist."""
 ref_df = self.spark.read.format("delta").table(ref_table)
 orphans = self.df.join(
 ref_df,
 self.df[column_name] == ref_df[ref_column],
 'left_anti'
).count()

 self.results.append({
 'check': 'referential_integrity',
 'column': column_name,
 'reference': f"{ref_table}.{ref_column}",
 'passed': orphans == 0,
 'orphan_count': orphans
 })
 return self

 def run(self):
 """Execute all checks and return results."""
 results_df = self.spark.createDataFrame(self.results)
 results_df = results_df.withColumn("table_name", lit(self.table_name))
 results_df = results_df.withColumn("check_time", current_timestamp())
 return results_df

Execute quality checks
checker = DataQualityChecker(spark, "production.silver.orders")
results = (checker
 .check_not_null("order_id")
 .check_not_null("customer_id")
 .check_unique("order_id")
 .check_range("amount", 0, 1000000)
 .check_referential_integrity("customer_id", "production.silver.customers", "customer_id")
 .run()
)

Store results
results.write.format("delta").mode("append").saveAsTable("governance.data_quality_results")
5.3 Quality Monitoring Dashboard
-- Quality score by table
SELECT
 table_name,
 COUNT(*) as total_checks,
 SUM(CASE WHEN passed THEN 1 ELSE 0 END) as passed_checks,
 ROUND(SUM(CASE WHEN passed THEN 1 ELSE 0 END) * 100.0 / COUNT(*), 2) as quality_score
FROM governance.data_quality_results
WHERE check_time >= current_date() - INTERVAL 7 DAYS
GROUP BY table_name
ORDER BY quality_score;

-- Quality trends over time
SELECT
 DATE_TRUNC('day', check_time) as check_date,
 table_name,
 ROUND(AVG(CASE WHEN passed THEN 100 ELSE 0 END), 2) as avg_quality_score
FROM governance.data_quality_results
WHERE check_time >= current_date() - INTERVAL 30 DAYS
GROUP BY 1, 2
ORDER BY 1, 2;

-- Failed checks requiring attention
SELECT
 table_name,
 check_type,
 column_name,
 actual_value,
 threshold,
 check_time
FROM governance.data_quality_results
WHERE passed = FALSE
AND check_time >= current_date() - INTERVAL 1 DAY
ORDER BY check_time DESC;
6. Compliance and Audit
6.1 Regulatory Requirements
	Regulation
	Scope
	Key Requirements

	GDPR
	EU personal data
	Consent, right to erasure, DPIAs

	CCPA
	CA consumer data
	Disclosure, opt-out, deletion

	HIPAA
	Healthcare data
	Access controls, audit trails, encryption

	SOX
	Financial data
	Internal controls, audit trails

	PCI-DSS
	Payment data
	Encryption, access control, monitoring

6.2 Audit Logging
System Tables for Audit
-- Access audit log
SELECT
 event_time,
 user_identity.email as user,
 service_name,
 action_name,
 request_params,
 response.status_code,
 source_ip_address
FROM system.access.audit
WHERE event_date >= current_date() - INTERVAL 7 DAYS
ORDER BY event_time DESC;

-- Data access patterns
SELECT
 DATE_TRUNC('hour', event_time) as hour,
 user_identity.email as user,
 request_params.full_name_arg as table_name,
 COUNT(*) as access_count
FROM system.access.audit
WHERE action_name = 'getTable'
AND event_date >= current_date() - INTERVAL 1 DAY
GROUP BY 1, 2, 3
ORDER BY hour DESC, access_count DESC;

-- Permission changes
SELECT
 event_time,
 user_identity.email as changed_by,
 action_name,
 request_params.changes as permission_changes,
 request_params.securable_full_name as object
FROM system.access.audit
WHERE action_name IN ('updatePermissions', 'updateGrants')
AND event_date >= current_date() - INTERVAL 30 DAYS
ORDER BY event_time DESC;
6.3 Compliance Reporting
Generate compliance report
def generate_compliance_report(report_date):
 """
 Generate comprehensive compliance report.
 """
 report = {}

 # 1. Access Control Summary
 access_summary = spark.sql(f"""
 SELECT
 'Total Users' as metric,
 COUNT(DISTINCT user_identity.email) as value
 FROM system.access.audit
 WHERE event_date = '{report_date}'
 UNION ALL
 SELECT
 'Tables Accessed' as metric,
 COUNT(DISTINCT request_params.full_name_arg) as value
 FROM system.access.audit
 WHERE event_date = '{report_date}'
 AND action_name = 'getTable'
 UNION ALL
 SELECT
 'Failed Access Attempts' as metric,
 COUNT(*) as value
 FROM system.access.audit
 WHERE event_date = '{report_date}'
 AND response.status_code >= 400
 """)
 report['access_summary'] = access_summary

 # 2. PII Access Report
 pii_access = spark.sql(f"""
 SELECT
 a.user_identity.email as user,
 a.request_params.full_name_arg as table_name,
 COUNT(*) as access_count
 FROM system.access.audit a
 JOIN system.information_schema.table_tags t
 ON a.request_params.full_name_arg = CONCAT(t.table_catalog, '.', t.table_schema, '.', t.table_name)
 WHERE t.tag_name = 'contains_pii'
 AND t.tag_value = 'true'
 AND a.event_date = '{report_date}'
 GROUP BY 1, 2
 """)
 report['pii_access'] = pii_access

 # 3. Data Quality Summary
 dq_summary = spark.sql(f"""
 SELECT
 table_name,
 ROUND(AVG(CASE WHEN passed THEN 100 ELSE 0 END), 2) as quality_score,
 COUNT(*) as checks_run,
 SUM(CASE WHEN NOT passed THEN 1 ELSE 0 END) as failures
 FROM governance.data_quality_results
 WHERE DATE(check_time) = '{report_date}'
 GROUP BY table_name
 """)
 report['data_quality'] = dq_summary

 # 4. Permission Changes
 perm_changes = spark.sql(f"""
 SELECT
 event_time,
 user_identity.email as changed_by,
 request_params.securable_full_name as object,
 request_params.changes as changes
 FROM system.access.audit
 WHERE action_name IN ('updatePermissions', 'updateGrants')
 AND event_date = '{report_date}'
 """)
 report['permission_changes'] = perm_changes

 return report

Generate daily report
report = generate_compliance_report(current_date())
6.4 Data Retention and Deletion
Implement data retention policies
def enforce_retention_policy():
 """
 Delete data beyond retention period.
 """
 # Get tables with retention policies
 retention_policies = spark.sql("""
 SELECT
 CONCAT(table_catalog, '.', table_schema, '.', table_name) as full_table_name,
 CAST(tag_value AS INT) as retention_days
 FROM system.information_schema.table_tags
 WHERE tag_name = 'retention_days'
 """).collect()

 for policy in retention_policies:
 table_name = policy['full_table_name']
 retention_days = policy['retention_days']

 # Check for timestamp column
 columns = spark.sql(f"DESCRIBE {table_name}").collect()
 date_columns = [c['col_name'] for c in columns
 if 'date' in c['col_name'].lower()
 or 'timestamp' in c['col_name'].lower()]

 if date_columns:
 date_col = date_columns[0]
 cutoff_date = f"current_date() - INTERVAL {retention_days} DAYS"

 # Delete old records
 spark.sql(f"""
 DELETE FROM {table_name}
 WHERE {date_col} < {cutoff_date}
 """)

 print(f"Retention enforced for {table_name}: deleted records older than {retention_days} days")

GDPR Right to Erasure
def process_deletion_request(customer_id):
 """
 Process GDPR deletion request for a customer.
 """
 # Get all tables containing customer data
 customer_tables = spark.sql("""
 SELECT DISTINCT
 CONCAT(table_catalog, '.', table_schema, '.', table_name) as full_table_name
 FROM system.information_schema.columns
 WHERE column_name = 'customer_id'
 """).collect()

 deletion_log = []

 for table in customer_tables:
 table_name = table['full_table_name']
 try:
 # Count records to delete
 count = spark.sql(f"""
 SELECT COUNT(*) FROM {table_name}
 WHERE customer_id = '{customer_id}'
 """).first()[0]

 # Delete records
 spark.sql(f"""
 DELETE FROM {table_name}
 WHERE customer_id = '{customer_id}'
 """)

 deletion_log.append({
 'table': table_name,
 'records_deleted': count,
 'status': 'success'
 })
 except Exception as e:
 deletion_log.append({
 'table': table_name,
 'records_deleted': 0,
 'status': f'error: {str(e)}'
 })

 # Log deletion for audit
 deletion_df = spark.createDataFrame(deletion_log)
 deletion_df = deletion_df.withColumn("customer_id", lit(customer_id))
 deletion_df = deletion_df.withColumn("request_time", current_timestamp())
 deletion_df.write.format("delta").mode("append").saveAsTable("governance.deletion_requests")

 return deletion_log
7. Data Lifecycle Management
7.1 Lifecycle Stages
┌───┐
│ DATA LIFECYCLE STAGES │
└───┘

 CREATE → STORE → USE → ARCHIVE → DISPOSE
 │ │ │ │ │
 ▼ ▼ ▼ ▼ ▼
 ┌────────┐ ┌────────┐ ┌────────┐ ┌────────┐ ┌────────┐
 │Classify│ │Secure │ │Monitor │ │Compress│ │Delete │
 │Tag │ │Encrypt │ │Audit │ │Move │ │Purge │
 │Quality │ │Control │ │Quality │ │Archive │ │Verify │
 └────────┘ └────────┘ └────────┘ └────────┘ └────────┘
7.2 Lifecycle Policies
-- Define lifecycle stages in tags
ALTER TABLE production.bronze.events
SET TAGS (
 'lifecycle_stage' = 'active',
 'retention_days' = '90',
 'archive_after_days' = '30',
 'delete_after_days' = '365'
);

-- View tables by lifecycle stage
SELECT
 CONCAT(table_catalog, '.', table_schema, '.', table_name) as table_name,
 MAX(CASE WHEN tag_name = 'lifecycle_stage' THEN tag_value END) as stage,
 MAX(CASE WHEN tag_name = 'retention_days' THEN tag_value END) as retention,
 MAX(CASE WHEN tag_name = 'archive_after_days' THEN tag_value END) as archive_after
FROM system.information_schema.table_tags
WHERE tag_name IN ('lifecycle_stage', 'retention_days', 'archive_after_days')
GROUP BY 1;
7.3 Automated Lifecycle Management
from datetime import datetime, timedelta

def manage_data_lifecycle():
 """
 Automated data lifecycle management.
 """
 # Get lifecycle policies
 policies = spark.sql("""
 SELECT
 CONCAT(t.table_catalog, '.', t.table_schema, '.', t.table_name) as table_name,
 MAX(CASE WHEN tag_name = 'archive_after_days' THEN CAST(tag_value AS INT) END) as archive_days,
 MAX(CASE WHEN tag_name = 'delete_after_days' THEN CAST(tag_value AS INT) END) as delete_days
 FROM system.information_schema.table_tags t
 GROUP BY 1
 HAVING archive_days IS NOT NULL OR delete_days IS NOT NULL
 """).collect()

 for policy in policies:
 table_name = policy['table_name']

 # Get table creation/modification date
 table_info = spark.sql(f"DESCRIBE DETAIL {table_name}").first()

 # Archive old partitions
 if policy['archive_days']:
 archive_date = datetime.now() - timedelta(days=policy['archive_days'])
 # Move to cold storage tier
 spark.sql(f"""
 OPTIMIZE {table_name}
 WHERE _ingestion_date < '{archive_date.strftime('%Y-%m-%d')}'
 """)

 # Delete expired data
 if policy['delete_days']:
 delete_date = datetime.now() - timedelta(days=policy['delete_days'])
 spark.sql(f"""
 DELETE FROM {table_name}
 WHERE _ingestion_date < '{delete_date.strftime('%Y-%m-%d')}'
 """)

 # Vacuum to reclaim storage
 spark.sql(f"VACUUM {table_name} RETAIN 168 HOURS")

 print(f"Lifecycle management completed for {table_name}")
8. Metadata Management
8.1 Metadata Strategy
Metadata Types
	Type
	Description
	Examples

	Technical
	System-generated
	Schema, data types, statistics

	Business
	User-defined
	Descriptions, owners, domains

	Operational
	Runtime
	Lineage, quality scores, access

	Governance
	Policy
	Classification, retention, compliance

8.2 Cataloging Best Practices
-- Rich metadata for tables
CREATE TABLE production.gold.customer_360 (
 customer_id STRING COMMENT 'Unique customer identifier',
 name STRING COMMENT 'Customer full name',
 email STRING COMMENT 'Primary email address (PII)',
 lifetime_value DECIMAL(18,2) COMMENT 'Total customer lifetime value in USD',
 segment STRING COMMENT 'Customer segment: premium, standard, basic',
 last_activity_date DATE COMMENT 'Date of most recent customer activity'
)
USING DELTA
COMMENT 'Comprehensive customer view combining demographics, transactions, and engagement data'
TBLPROPERTIES (
 'owner' = 'customer_analytics_team',
 'domain' = 'customer',
 'refresh_frequency' = 'daily',
 'sla' = '6am EST'
);

-- Add business glossary terms
ALTER TABLE production.gold.customer_360
SET TAGS (
 'business_term' = 'Customer 360',
 'data_product' = 'true',
 'data_domain' = 'Customer Analytics'
);
8.3 Data Discovery
-- Search for tables by keyword
SELECT
 table_catalog,
 table_schema,
 table_name,
 comment
FROM system.information_schema.tables
WHERE LOWER(table_name) LIKE '%customer%'
 OR LOWER(comment) LIKE '%customer%';

-- Search by tags
SELECT
 t.table_catalog,
 t.table_schema,
 t.table_name,
 tg.tag_name,
 tg.tag_value
FROM system.information_schema.tables t
JOIN system.information_schema.table_tags tg
 ON t.table_catalog = tg.table_catalog
 AND t.table_schema = tg.table_schema
 AND t.table_name = tg.table_name
WHERE tg.tag_name = 'data_domain'
AND tg.tag_value = 'Customer Analytics';

-- Search columns containing specific data types
SELECT
 table_catalog,
 table_schema,
 table_name,
 column_name,
 data_type,
 comment
FROM system.information_schema.columns
WHERE LOWER(column_name) LIKE '%email%'
 OR LOWER(comment) LIKE '%pii%';
9. Governance Operations
9.1 Governance Metrics
-- Governance KPIs Dashboard
CREATE OR REPLACE VIEW governance.kpi_dashboard AS

-- Data Quality Score
SELECT 'Data Quality Score' as metric,
 ROUND(AVG(CASE WHEN passed THEN 100 ELSE 0 END), 2) as value,
 'percent' as unit
FROM governance.data_quality_results
WHERE check_time >= current_date() - INTERVAL 7 DAYS

UNION ALL

-- Catalog Coverage
SELECT 'Catalog Coverage' as metric,
 ROUND(COUNT(CASE WHEN comment IS NOT NULL THEN 1 END) * 100.0 / COUNT(*), 2) as value,
 'percent' as unit
FROM system.information_schema.tables
WHERE table_schema NOT IN ('information_schema', 'default')

UNION ALL

-- Classification Coverage
SELECT 'Classification Coverage' as metric,
 ROUND(COUNT(DISTINCT CONCAT(table_catalog, '.', table_schema, '.', table_name)) * 100.0 /
 (SELECT COUNT(*) FROM system.information_schema.tables), 2) as value,
 'percent' as unit
FROM system.information_schema.table_tags
WHERE tag_name = 'classification'

UNION ALL

-- Active Data Stewards
SELECT 'Active Data Stewards' as metric,
 COUNT(DISTINCT user_identity.email) as value,
 'count' as unit
FROM system.access.audit
WHERE action_name IN ('updatePermissions', 'alterTable')
AND event_date >= current_date() - INTERVAL 30 DAYS;
9.2 Governance Review Process
Quarterly Review Checklist
	Area
	Review Items
	Owner

	Access
	Permission audit, dormant access
	Security

	Quality
	Quality scores, failed checks
	Data Stewards

	Compliance
	Audit log review, policy violations
	Compliance

	Metadata
	Catalog completeness, staleness
	Data Stewards

	Lifecycle
	Retention policy adherence
	Operations

9.3 Continuous Improvement
Governance health check
def governance_health_check():
 """
 Comprehensive governance health assessment.
 """
 health_report = {}

 # 1. Check catalog documentation coverage
 doc_coverage = spark.sql("""
 SELECT
 ROUND(COUNT(CASE WHEN comment IS NOT NULL AND comment != '' THEN 1 END) * 100.0 / COUNT(*), 2) as coverage
 FROM system.information_schema.tables
 """).first()['coverage']
 health_report['documentation_coverage'] = doc_coverage

 # 2. Check classification coverage
 class_coverage = spark.sql("""
 SELECT ROUND(
 COUNT(DISTINCT CONCAT(table_catalog, '.', table_schema, '.', table_name)) * 100.0 /
 (SELECT COUNT(*) FROM system.information_schema.tables WHERE table_type = 'MANAGED')
 , 2) as coverage
 FROM system.information_schema.table_tags
 WHERE tag_name = 'classification'
 """).first()['coverage']
 health_report['classification_coverage'] = class_coverage

 # 3. Check data quality trends
 dq_trend = spark.sql("""
 SELECT
 AVG(CASE WHEN passed THEN 100 ELSE 0 END) as current_week
 FROM governance.data_quality_results
 WHERE check_time >= current_date() - INTERVAL 7 DAYS
 """).first()['current_week']
 health_report['data_quality_score'] = dq_trend

 # 4. Check for orphaned tables (no owner)
 orphaned = spark.sql("""
 SELECT COUNT(*) as count
 FROM system.information_schema.tables t
 LEFT JOIN system.information_schema.table_tags tg
 ON t.table_name = tg.table_name
 AND tg.tag_name = 'owner'
 WHERE tg.tag_value IS NULL
 AND t.table_schema NOT IN ('information_schema', 'default')
 """).first()['count']
 health_report['orphaned_tables'] = orphaned

 # Generate recommendations
 recommendations = []
 if doc_coverage < 80:
 recommendations.append(f"Documentation coverage is {doc_coverage}%. Target: 80%")
 if class_coverage < 100:
 recommendations.append(f"Classification coverage is {class_coverage}%. Target: 100%")
 if dq_trend < 95:
 recommendations.append(f"Data quality score is {dq_trend}%. Target: 95%")
 if orphaned > 0:
 recommendations.append(f"{orphaned} tables have no owner assigned")

 health_report['recommendations'] = recommendations

 return health_report
10. Implementation Checklist
10.1 Foundation
	Task
	Owner
	Status

	Define governance charter
	Governance Lead
	

	Establish governance council
	Executive Sponsor
	

	Assign data stewards
	Domain Owners
	

	Document policies
	Governance Lead
	

10.2 Technical Implementation
	Task
	Owner
	Status

	Enable Unity Catalog
	Platform Team
	

	Configure access controls
	Security Team
	

	Implement data classification
	Data Stewards
	

	Set up audit logging
	Platform Team
	

	Deploy quality monitoring
	Data Engineers
	

10.3 Operations
	Task
	Owner
	Status

	Create governance dashboards
	Platform Team
	

	Establish review cadence
	Governance Lead
	

	Train users
	Governance Lead
	

	Document procedures
	Data Stewards
	

Document Version: 1.0
Last Updated: January 2026
Author: Mastech Digital - Data Engineering Practice
image1.png
#MAST=CH
DIGITAL

